Problem Set 1

Spectral clustering and community detection

1. Show that Lloyd's k-mean algorithm converges in finitely many steps.
2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be points in \mathbb{R}^{d}. Define an $n \times n$ weight matrix W with

$$
W(i, j)=\exp \left(-\left\|x_{i}-x_{j}\right\|_{2}^{2} / 2\right) .
$$

Show that $W \succcurlyeq 0$, that is, W is a positive semi-definite matrix.
3. Let G be a finite undirected, unweighted graph. Let $\mathcal{L}=D^{-1 / 2}(D-A) D^{-1 / 2}$ be its normalized Laplacian, where A is the adjacency matrix of the graph. Suppose λ_{n} be its maximum eigenvalue.
(a) Show that

$$
\lambda_{n}=\max _{x \neq 0} \frac{\sum_{i \sim j}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i} d_{i} x_{i}^{2}} \leq 2
$$

where d_{i} is the degree of the vertex i.
(b) Prove that $\lambda_{n}=2$ if and only if G has a bipartite connected component.
(c) Give an example of a non-bipartite (and disconnected) graph with $\lambda_{n}=2$.
4. (a) Let G be a connected, unweighted graph, λ_{2} the second smallest eigenvalue of the normalized Laplacian \mathcal{L} and $\operatorname{diam}(G)$ the diameter of G. Then

$$
\lambda_{2} \geq \frac{1}{\operatorname{diam}(G) \operatorname{vol}(G)}
$$

where $\operatorname{vol}(G)=\sum_{i} d(i)$.
Hint: Use the Courant-Fischer characterization for λ_{2} :

$$
\lambda_{2}=\inf _{x \neq 0: \sum_{i} d_{i} x_{i}=0} \frac{\sum_{i \sim j}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i} d_{i} x_{i}^{2}}
$$

(b) Consider the dumbbell graph of $2 n$. It is defined as the disjoint union of two complete graphs K_{n} connected by a single edge. Use part (a) to show that for this graph,

$$
\lambda_{2} \geq c n^{-2}
$$

for some constant $c>0$ independent of n.
5. Let G be an undirected d-regular graph. The Cheeger's inequality (hard direction) can be generalized as follows. Let z be any vector orthogonal to 1 . Let S be subset obtained by performing the sweep cut on z. Then

$$
\phi(S) \leq \sqrt{2 R(z)}
$$

where

$$
R(z)=\frac{\sum_{i \sim j}\left(z_{i}-z_{j}\right)^{2}}{d \sum_{i} z_{i}^{2}}
$$

The following modifications of the proof are needed to obtain $y \geq 0$ such that $\operatorname{supp}(y) \leq n / 2$ and $R(y) \leq R(z)$, on which we apply the key lemma (randomized rounding) as before.
(a) Show that $R(z-c 1) \leq R(z)$.
(b) Define $x=z-m 1$ where m is the median of the values of z. By definition, x has at most $n / 2$ positive values and at most $n / 2$ negative values.
(c) Set $x^{+}=\max (x, 0)$ and $x^{-}=\max (-x, 0)$. Note that $x=x^{+}-x^{-}$. Prove that

$$
\min \left(R\left(x^{+}\right), R\left(x^{-}\right)\right) \leq R(x)
$$

If $R\left(x^{+}\right) \leq R(x)$ take $y=x^{+}$. Otherwise, we must have $R\left(x^{-}\right) \leq R(x)$ and we take $y=x^{-}$.

