Problem Set 1

Spectral clustering and community detection

- 1. Show that Lloyd's k-mean algorithm converges in finitely many steps.
- 2. Let x_1, x_2, \ldots, x_n be points in \mathbb{R}^d . Define an $n \times n$ weight matrix W with

$$W(i,j) = \exp\left(-\|x_i - x_j\|_2^2/2\right).$$

Show that $W \geq 0$, that is, W is a positive semi-definite matrix.

- 3. Let G be a finite undirected, unweighted graph. Let $\mathcal{L} = D^{-1/2}(D-A)D^{-1/2}$ be its normalized Laplacian, where A is the adjacency matrix of the graph. Suppose λ_n be its maximum eigenvalue.
 - (a) Show that

$$\lambda_n = \max_{x \neq 0} \frac{\sum_{i \sim j} (x_i - x_j)^2}{\sum_i d_i x_i^2} \le 2,$$

where d_i is the degree of the vertex *i*.

- (b) Prove that $\lambda_n = 2$ if and only if G has a bipartite connected component.
- (c) Give an example of a non-bipartite (and disconnected) graph with $\lambda_n = 2$.
- 4. (a) Let G be a connected, unweighted graph, λ_2 the second smallest eigenvalue of the normalized Laplacian \mathcal{L} and diam(G) the diameter of G. Then

$$\lambda_2 \ge \frac{1}{\operatorname{diam}(G)\operatorname{vol}(G)}$$

where $\operatorname{vol}(G) = \sum_{i} d(i)$. Hint: Use the Courant-Fig.

Hint: Use the Courant-Fischer characterization for λ_2 *:*

$$\lambda_{2} = \inf_{x \neq 0: \sum_{i} d_{i} x_{i} = 0} \frac{\sum_{i \sim j} (x_{i} - x_{j})^{2}}{\sum_{i} d_{i} x_{i}^{2}}$$

(b) Consider the dumbbell graph of 2n. It is defined as the disjoint union of two complete graphs K_n connected by a single edge. Use part (a) to show that for this graph,

$$\lambda_2 \ge cn^{-2}$$

for some constant c > 0 independent of n.

5. Let G be an undirected d-regular graph. The Cheeger's inequality (hard direction) can be generalized as follows. Let z be any vector orthogonal to 1. Let S be subset obtained by performing the sweep cut on z. Then

$$\phi(S) \le \sqrt{2R(z)},$$

where

$$R(z) = \frac{\sum_{i \sim j} (z_i - z_j)^2}{d\sum_i z_i^2}$$

The following modifications of the proof are needed to obtain $y \ge 0$ such that $\operatorname{supp}(y) \le n/2$ and $R(y) \le R(z)$, on which we apply the key lemma (randomized rounding) as before.

(a) Show that $R(z - c1) \leq R(z)$.

- (b) Define x = z m1 where m is the median of the values of z. By definition, x has at most n/2 positive values and at most n/2 negative values.
- (c) Set $x^+ = \max(x, 0)$ and $x^- = \max(-x, 0)$. Note that $x = x^+ x^-$. Prove that

 $\min(R(x^+), R(x^-)) \le R(x).$

If $R(x^+) \leq R(x)$ take $y = x^+$. Otherwise, we must have $R(x^-) \leq R(x)$ and we take $y = x^-$.